Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.314
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38505909

RESUMO

This study aimed to investigate the underlying molecular mechanisms of transferrin receptor (TFR1) in non-small cell lung cancer (NSCLC). Histological analysis was performed using hematoxylin-eosin (HE) staining. The number of CD8+ T cell were determined by flow cytometry and immunofluorescence assays. mRNA levels were analyzed by qRT-PCR. Protein expression was detected by western blot. Ferroptosis was detected by using propidium iodide (PI) staining. Xenograft experiment was applied for determining tumor growth. The results showed that interferon (IFN)-γ plus iron dextran (FeDx) induced iron overload and the ferroptosis of NSCLC cells. Moreover, IFN-γ-mediated upregulation of TFR1 promoted ferritinophagy and tumor cell ferroptosis via blocking via blocking ferritin heavy chain 1 (FTH1)/ ferritin light chain (FTL) signaling. However, TFR1 knockout suppressed the ferroptosis of tumor cells. Furthermore, FeDx-mediated iron overload promoted the sensitivity of anti-programmed death ligand 1 (PD-L1) therapies. Clinically, TFR1 was downregulated in NSCLC patients. Low levels of TFR1 predicted decreased CD8+ T cells. Taken together, IFN-γ combined with iron metabolism therapies may provide a novel alternative for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Sobrecarga de Ferro , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Ferro/metabolismo
2.
FASEB J ; 38(5): e23550, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466338

RESUMO

Breast cancer is the most prevalent malignant tumor in women. Adriamycin (ADR) is a primary chemotherapy drug, but resistance limits its effectiveness. Ferroptosis, a newly identified cell death mechanism, involves the transferrin receptor (TFRC), closely linked with tumor cells. This study aimed to explore TFRC and ferroptosis's role in breast cancer drug resistance. Bioinformatics analysis showed that TFRC was significantly downregulated in drug-resistant cell lines, and patients with low TFRC expression might demonstrate a poor chemotherapeutic response to standard treatment. High expression of TFRC was positively correlated with most of the ferroptosis-related driver genes. The research findings indicate that ferroptosis markers were higher in breast cancer tissues than in normal ones. In chemotherapy-sensitive cases, Ferrous ion (Fe2+ ) and malondialdehyde (MDA) levels were higher than in resistant cases (all p < .05). TFRC expression was higher in breast cancer than in normal tissue, especially in the sensitive group (all p < .05). Cytological experiments showed increased hydrogen peroxide (H2 O2 ) after ADR treatment in both sensitive and resistant cells, with varying MDA changes (all p < .05). Elevating TFRC increased Fe2+ and MDA in ADR-resistant cells, enhancing their sensitivity to ADR. However, TFRC upregulation combined with ADR increased proliferation and invasiveness in resistant cell lines (all p < .05). In conclusion, ADR resistance to breast cancer is related to the regulation of iron ion-mediated ferroptosis by TFRC. Upregulation of TFRC in ADR-resistant breast cancer cells activates ferroptosis and reverses ADR chemotherapy resistance of breast cancer.


Assuntos
Neoplasias da Mama , Ferroptose , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Doxorrubicina/farmacologia , Receptores da Transferrina/genética , Transferrina
3.
Clin Sci (Lond) ; 138(5): 235-249, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38357976

RESUMO

Contrast-induced nephropathy (CIN) is a leading cause of hospital-acquired acute kidney injury (AKI). Recently, ferroptosis was reported to be crucial for AKI pathogenesis. Our previous studies indicated antioxidant tetramethylpyrazine (TMP) prevent CIN in vivo. However, whether ferroptosis is involved in TMP nephroprotective mechanism against CIN is unclear. In the present study, we investigated the role of renal tubular epithelial cell ferroptosis in TMP reno-protective effect against CIN and the molecular mechanisms by which TMP regulates ferroptosis. Classical contrast-medium, Iohexol, was used to construct CIN models in rats and HK-2 cells. Results showed that tubular cell injury was accompanied by ferroptosis both in vivo and in vitro, including the typical features of ferroptosis, Fe2+ accumulation, lipid peroxidation and decreased glutathione peroxidase 4 (GPX4). Ferroptosis inhibition by classic inhibitors Fer-1 and DFO promoted cell viability and reduced intracellular ROS production. Additionally, TMP significantly inhibited renal dysfunction, reduced AKI biomarkers, prevented ROS production, inhibited renal Fe2+ accumulation and increased GPX4 expression. Expressions of various proteins associated with iron ion metabolism, including transferrin receptor (TFRC), divalent metal transporter 1, iron-responsive element binding protein 2, ferritin heavy chain 1, ferroportin 1, and heat shock factor binding protein 1, were examined using mechanistic analyses. Among these, TFRC changes were the most significant after TMP pretreatment. Results of siRNA knockdown and plasmid overexpression of TFRC indicated that TFRC is essential for TMP to alleviate ferroptosis and reduce LDH release, Fe2+ accumulation and intracellular ROS. Our findings provide crucial insights about the potential of TMP in treating AKI associated with ferroptosis.


Assuntos
Injúria Renal Aguda , Ferroptose , Pirazinas , Animais , Ratos , Espécies Reativas de Oxigênio , Células Epiteliais , Receptores da Transferrina/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle
4.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338987

RESUMO

Hepcidin is upregulated by increased body iron stores and inflammatory cytokines. It is associated with cardiovascular events, arterial stiffness, and increased iron accumulation in human atheroma with hemorrhage. However, it is unknown whether the expression of hepcidin in human carotid plaques is related to plaque severity and whether hepcidin expression differs between men and women. Carotid samples from 58 patients (38 males and 20 females) were immunostained with hepcidin, macrophages, ferritin, and transferrin receptor. Immunocytochemistry of hepcidin was performed on THP-1 macrophages exposed to iron or 7betahydroxycholesterol. Hepcidin expression significantly increases with the progression of human atherosclerotic plaques. Plaques of male patients have significantly higher levels of hepcidin. Expressions of hepcidin are significantly correlated with the accumulation of CD68-positive macrophages and transferrin receptor 1 (TfR1) and apoptosis. In vitro, hepcidin is significantly increased in macrophages exposed to iron and moderately increased following 7-oxysterol treatment. In the cultured cells, suppression of hepcidin protected against macrophage cell death, lysosomal membrane permeabilization, and oxidative stress. Hepcidin may play a crucial role in the development and progression of atherosclerosis. The differential expression of hepcidin in male and female patients and its significant correlations with plaque severity, highlight the potential of hepcidin as a biomarker for risk stratification and therapeutic targeting in atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Feminino , Humanos , Masculino , Aterosclerose/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Receptores da Transferrina/genética , Caracteres Sexuais
5.
Proc Natl Acad Sci U S A ; 121(10): e2317026121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408250

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been detected in almost all organs of coronavirus disease-19 patients, although some organs do not express angiotensin-converting enzyme-2 (ACE2), a known receptor of SARS-CoV-2, implying the presence of alternative receptors and/or co-receptors. Here, we show that the ubiquitously distributed human transferrin receptor (TfR), which binds to diferric transferrin to traffic between membrane and endosome for the iron delivery cycle, can ACE2-independently mediate SARS-CoV-2 infection. Human, not mouse TfR, interacts with Spike protein with a high affinity (KD ~2.95 nM) to mediate SARS-CoV-2 endocytosis. TfR knock-down (TfR-deficiency is lethal) and overexpression inhibit and promote SARS-CoV-2 infection, respectively. Humanized TfR expression enables SARS-CoV-2 infection in baby hamster kidney cells and C57 mice, which are known to be insusceptible to the virus infection. Soluble TfR, Tf, designed peptides blocking TfR-Spike interaction and anti-TfR antibody show significant anti-COVID-19 effects in cell and monkey models. Collectively, this report indicates that TfR is a receptor/co-receptor of SARS-CoV-2 mediating SARS-CoV-2 entry and infectivity by likely using the TfR trafficking pathway.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
J Cell Physiol ; 239(2): e31172, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38214117

RESUMO

Periodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice. As Tfr2 suppresses osteoclastogenesis, we hypothesized that deficiency of Tfr2 may exacerbate periodontitis-induced bone loss. Mice lacking Tfr2 (Tfr2-/- ) and wild-type (Tfr2+/+ ) littermates were challenged with experimental periodontitis. Mandibles and maxillae were collected for microcomputed tomography and histology analyses. Osteoclast cultures from Tfr2+/+ and Tfr2-/- mice were established and analyzed for differentiation efficiency, by performing messenger RNA expression and protein signaling pathways. After 8 days, Tfr2-deficient mice revealed a more severe course of periodontitis paralleled by higher immune cell infiltration and a higher histological inflammation index than Tfr2+/+ mice. Moreover, Tfr2-deficient mice lost more alveolar bone compared to Tfr2+/+ littermates, an effect that was only partially iron-dependent. Histological analysis revealed a higher number of osteoclasts in the alveolar bone of Tfr2-deficient mice. In line, Tfr2-deficient osteoclastic differentiation ex vivo was faster and more efficient as reflected by a higher number of osteoclasts, a higher expression of osteoclast markers, and an increased resorptive activity. Mechanistically, Tfr2-deficient osteoclasts showed a higher p38-MAPK signaling and inhibition of p38-MAPK signaling in Tfr2-deficient cells reverted osteoclast formation to Tfr2+/+ levels. Taken together, our data indicate that Tfr2 modulates the inflammatory response in periodontitis thereby mitigating effects on alveolar bone loss.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Humanos , Camundongos , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Ferro , Osteoclastos , Periodontite/genética , Periodontite/metabolismo , Receptores da Transferrina/genética , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Células Cultivadas
7.
Redox Biol ; 70: 103041, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38241836

RESUMO

Oxidative stress and iron accumulation-induced ferroptosis occurs in injured vascular cells and can promote thrombogenesis. Transferrin receptor 1 (encoded by the TFRC gene) is an initial element involved in iron transport and ferroptosis and is highly expressed in injured vascular tissues, but its role in thrombosis has not been determined. To explore the potential mechanism and therapeutic effect of TFRC on thrombogenesis, a DVT model of femoral veins (FVs) was established in rats, and weighted correlation network analysis (WGCNA) was used to identify TFRC as a hub protein that is associated with thrombus formation. TFRC was knocked down by adeno-associated virus (AAV) or lentivirus transduction in FVs or human umbilical vein endothelial cells (HUVECs), respectively. Thrombus characteristics and ferroptosis biomarkers were evaluated. Colocalization analysis, molecular docking and coimmunoprecipitation (co-IP) were used to evaluate protein interactions. Tissue-specific TFRC knockdown alleviated iron overload and redox stress, thereby preventing ferroptosis in injured FVs. Loss of TFRC in injured veins could alleviate thrombogenesis, reduce thrombus size and attenuate hypercoagulability. The protein level of thrombospondin-1 (THBS1) was increased in DVT tissues, and silencing TFRC decreased the protein level of THBS1. In vitro experiments further showed that TFRC and THBS1 were sensitive to erastin-induced ferroptosis and that TFRC knockdown reversed this effect. TFRC can interact with THBS1 in the domain spanning from TSR1-2 to TSR1-3 of THBS1. Amino acid sites, including GLN320 of TFRC and ASP502 of THBS1, could be potential pharmacological targets. Erastin induced ferroptosis affected extracellular THBS1 levels and weakened the interaction between TFRC and THBS1 both in vivo and in vitro, and promoted the interaction between THBS1 and CD47. This study revealed a linked relationship between venous ferroptosis and coagulation cascades. Controlling TFRC and ferroptosis in endothelial cells can be an efficient approach for preventing and treating thrombogenesis.


Assuntos
Ferroptose , Trombose , Humanos , Animais , Ratos , Ferroptose/genética , Simulação de Acoplamento Molecular , Receptores da Transferrina/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ferro/metabolismo , Trombose/genética , Trombose/metabolismo
8.
Mol Ther ; 32(3): 609-618, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38204164

RESUMO

Mucopolysaccharidosis type I (MPS I) causes systemic accumulation of glycosaminoglycans due to a genetic deficiency of α-L-iduronidase (IDUA), which results in progressive systemic symptoms affecting multiple organs, including the central nervous system (CNS). Because the blood-brain barrier (BBB) prevents enzymes from reaching the brain, enzyme replacement therapy is effective only against the somatic symptoms. Hematopoietic stem cell transplantation can address the CNS symptoms, but the risk of complications limits its applicability. We have developed a novel genetically modified protein consisting of IDUA fused with humanized anti-human transferrin receptor antibody (lepunafusp alfa; JR-171), which has been shown in nonclinical studies to be distributed to major organs, including the brain, bringing about systemic reductions in heparan sulfate (HS) and dermatan sulfate concentrations. Subsequently, a first-in-human study was conducted to evaluate the safety, pharmacokinetics, and exploratory efficacy of JR-171 in 18 patients with MPS I. No notable safety issues were observed. Plasma drug concentration increased dose dependently and reached its maximum approximately 4 h after the end of drug administration. Decreased HS in the cerebrospinal fluid suggested successful delivery of JR-171 across the BBB, while suppressed urine and serum concentrations of the substrates indicated that its somatic efficacy was comparable to that of laronidase.


Assuntos
Mucopolissacaridose I , Humanos , Mucopolissacaridose I/terapia , Mucopolissacaridose I/tratamento farmacológico , Iduronidase/efeitos adversos , Iduronidase/genética , Iduronidase/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Receptores da Transferrina/genética , Heparitina Sulfato/metabolismo
9.
J Diabetes ; 16(1): e13467, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37646182

RESUMO

AIM: Iron homeostasis is critical for functional respiratory chain complex of mitochondrial, thus potentially contributing to fat biology and energy homeostasis. Transferrin receptor (Tfrc) binds to transferrin for extracellular iron uptake and is recently reported to be involved in brown fat development and functionality. However, whether TFRC levels and variants are associated with human obesity is unknown. METHODS: To investigate the association of TFRC levels and variants with human obesity, fat biopsies were obtained from surgery. Exon-sequencing and genetic assessments were conducted of a case-control study. For TFRC levels assessment in fat biopsy, 9 overweight and 12 lean subjects were involved. For genetic study, obese (n = 1271) and lean subjects (n = 1455) were involved. TFRC levels were compared in abdominal mesenteric fat of pheochromocytoma patients versus control subjects, and overweight versus lean subjects. For genetic study, whole-exome sequencing of obese and matched control subjects were conducted and analyzed. In addition, the possible disruption in protein stability of TFRC variant was assessed by structural and molecular analysis. RESULTS: TFRC levels are increased in human browning adipose tissue and decreased in fat of overweight patients. Besides, TFRC levels are negatively correlated with body mass index and positively correlated with uncoupling protein 1 levels. Furthermore, a rare heterozygous missense variant p.I337V in TFRC shows a tendency to enrich in obese subjects. Structural and functional study reveals impaired protein stability of the TFRC variant compared to wild-type. CONCLUSIONS: Reduced TFRC levels and its rare variant p.I337V with protein instability are associated with human obesity.


Assuntos
Obesidade , Sobrepeso , Humanos , Tecido Adiposo Marrom/metabolismo , Estudos de Casos e Controles , Ferro , Obesidade/metabolismo , Receptores da Transferrina/genética
10.
Environ Pollut ; 344: 123255, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159631

RESUMO

The toxic effects of excessive manganese (Mn) levels in the environment have led to a severe public health concern. Ferroptosis is a newly form of cell death relying on iron, inherent to pathophysiological processes of psychiatric disorders, such as anxiety and depression-like behaviors. Excessive Mn exposure causes various neurological effects, including neuronal death and mood disorders. Whether Mn exposure causes anxiety and depression-like behaviors, and the underlying mechanisms of Mn-induced ferroptosis have yet to be determined. Here, Mn-exposed mice showed anxiety-like behavior. We also confirmed the accumulation of ferrous ion (Fe2+), lipid peroxidation, and depletion of antioxidant defense system both in vitro and in vivo Mn-exposed models, suggesting that Mn exposure can induce ferroptosis. Furthermore, Mn exposure downregulated the expression of miR-125b-2-3p. In turn, overexpression of miR-125b-2-3p alleviated the Mn-induced ferroptosis by targeting Transferrin receptor protein 1 (TFR1). In summary, this novel study established the propensity of Mn to cause anxiety-like behavior, an effect that was regulated by miR-125b-2-3p and ensuing ferroptosis secondary to the targeting of TFR1. These results offer promising targets for the prevention and treatment of Mn-induced neurotoxicity.


Assuntos
Ferroptose , MicroRNAs , Humanos , Animais , Camundongos , Manganês/toxicidade , Ansiedade/induzido quimicamente , Ferro/toxicidade , Receptores da Transferrina/genética
11.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894914

RESUMO

Recent research highlights the key role of iron dyshomeostasis in the pathogenesis of prostate cancer (PCa). PCa cells are heavily dependent on bioavailable iron, which frequently results in the reprogramming of iron uptake and storage pathways. Although advanced-stage PCa is currently incurable, bioactive peptides capable of modulating key iron-regulatory genes may constitute a means of exploiting a metabolic adaptation necessary for tumor growth. Recent annual increases in PCa incidence have been reported, highlighting the urgent need for novel treatments. We examined the ability of LNCaP, PC3, VCaP, and VCaP-EnzR cells to form colonies in the presence of androgen receptor inhibitors (ARI) and a series of iron-gene modulating oligopeptides (FT-001-FT-008). The viability of colonies following treatment was determined with clonogenic assays, and the expression levels of FTH1 (ferritin heavy chain 1) and TFRC (transferrin receptor) were determined with quantitative polymerase chain reaction (PCR). Peptides and ARIs combined significantly reduced PCa cell growth across all phenotypes, of which two peptides were the most effective. Colony growth suppression generally correlated with the magnitude of concurrent increases in FTH1 and decreases in TFRC expression for all cells. The results of this study provide preliminary insight into a novel approach at targeting iron dysmetabolism and sensitizing PCa cells to established cancer treatments.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ferro/metabolismo , Androgênios , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Genes Reguladores , Peptídeos/genética , Peptídeos/farmacologia , Peptídeos/metabolismo , Receptores da Transferrina/genética , Ferritinas/genética , Oxirredutases/metabolismo
12.
Cell Death Dis ; 14(9): 588, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666806

RESUMO

Annexin A10 (ANXA10) belongs to a family of membrane-bound calcium-dependent phospholipid-binding proteins, but its precise function remains unclear. Further research is required to understand its role in sessile serrated lesions (SSL) and colorectal cancer (CRC). We conducted transcriptome sequencing on pairs of SSL and corresponding normal control (NC) samples. Bioinformatic methods were utilized to assess ANXA10 expression in CRC. We knocked down and overexpressed ANXA10 in CRC cells to examine its effects on cell malignant ability. The effect of ANXA10 on lung metastasis of xenograft tumor cells in nude mice was also assessed. Furthermore, we used quantitative polymerase chain reaction, western blotting, and flow cytometry for reactive oxygen species (ROS), lipid ROS, and intracellular Fe2+ to measure ferroptosis. Immunoblotting and Immunofluorescence staining were used to detect autophagy. We found that ANXA10 was significantly overexpressed in SSL compared to NC. ANXA10 was also highly expressed in BRAF mutant CRCs and was associated with poor prognosis. ANXA10 knockdown reduced the survival, proliferation, and migration ability of CRC cells. Knockdown of ANXA10 inhibited lung metastasis of CRC cells in mice. ANXA10 knockdown increased transferrin receptor (TFRC) protein levels and led to downregulation of GSH/GSSG, increased Fe2+, MDA concentration, and ROS and lipid ROS in cells. Knockdown of ANXA10 inhibited TFRC degradation and was accompanied by an accumulation of autophagic flux and an increase in SQSTM1. Finally, Fer-1 rescued the migration and viability of ANXA10 knockdown cell lines. In brief, the knockdown of ANXA10 induces cellular ferroptosis by inhibiting autophagy-mediated TFRC degradation, thereby inhibiting CRC progression. This study reveals the mechanism of ANXA10 in ferroptosis, suggesting that it may serve as a potential therapeutic target for CRC of the serrated pathway.


Assuntos
Neoplasias Colorretais , Ferroptose , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Transferrina , Ferroptose/genética , Camundongos Nus , Espécies Reativas de Oxigênio , Receptores da Transferrina/genética , Autofagia/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana , Neoplasias Colorretais/genética , Lipídeos , Anexinas/genética
13.
Free Radic Biol Med ; 208: 445-457, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683766

RESUMO

Autophagy is a major clearance pathway for misfolded α-synuclein which promotes ferroptosis through NCOA4-mediated ferritin degradation. The regulation of these two processes to achieve improved neuroprotection in Parkinson's disease (PD) must be elucidated. Transcription factor EB (TFEB) is a master regulator of both autophagy and lysosome biogenesis, and lysosomes are important cellular iron storage organelles; however, the role of TFEB in ferroptosis and iron metabolism remains unclear. In this study, TFEB overexpression promoted the clearance of misfolded α-synuclein and prevented ferroptosis and iron overload. TFEB overexpression up-regulated transferrin receptor 1 (TfR1) synthesis and increased the localization of TfR1 in the lysosome, facilitating lysosomal iron import and transient lysosomal iron storage. TFEB overexpression increased the levels of cellular iron-safe storage proteins (both ferritin light and heavy chains). These functions in iron metabolism maintain the cellular labile iron at a low level and electrical activity, even under iron overload conditions. Notably, lower levels of cellular labile iron and the upregulation of ferritin light and heavy chains were reversed after TfR1 knockdown in cells overexpressing TFEB, indicating that TFEB regulates cellular labile iron and suppresses ferroptosis in a TfR1 dependent manner. Taken together, this evidence of the regulation of iron metabolism enriches our understanding of the function of TFEB. In addition, TFEB overexpression protects against ferroptosis and iron overload and provides a new direction and perspective for autophagy regulation in PD.


Assuntos
Ferroptose , Sobrecarga de Ferro , Doença de Parkinson , alfa-Sinucleína/metabolismo , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ferritinas/metabolismo , Ferroptose/genética , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Animais , Camundongos , Ratos , Células PC12/metabolismo
14.
Nat Immunol ; 24(10): 1671-1684, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709985

RESUMO

Iron metabolism is pivotal for cell fitness in the mammalian host; however, its role in group 3 innate lymphoid cells (ILC3s) is unknown. Here we show that transferrin receptor CD71 (encoded by Tfrc)-mediated iron metabolism cell-intrinsically controls ILC3 proliferation and host protection against Citrobacter rodentium infection and metabolically affects mitochondrial respiration by switching of oxidative phosphorylation toward glycolysis. Iron deprivation or Tfrc ablation in ILC3s reduces the expression and/or activity of the aryl hydrocarbon receptor (Ahr), a key ILC3 regulator. Genetic ablation or activation of Ahr in ILC3s leads to CD71 upregulation or downregulation, respectively, suggesting Ahr-mediated suppression of CD71. Mechanistically, Ahr directly binds to the Tfrc promoter to inhibit transcription. Iron overload partially restores the defective ILC3 compartment in the small intestine of Ahr-deficient mice, consistent with the compensatory upregulation of CD71. These data collectively demonstrate an under-appreciated role of the Ahr-CD71-iron axis in the regulation of ILC3 maintenance and function.


Assuntos
Infecções por Enterobacteriaceae , Imunidade Inata , Animais , Camundongos , Linfócitos , Estado Nutricional , Ferro , Receptores da Transferrina/genética , Mamíferos
15.
Cell Mol Life Sci ; 80(9): 248, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578596

RESUMO

Human erythroleukemic K562 cells represent the prototypical cell culture model of chronic myeloid leukemia (CML). The cells are pseudo-triploid and positive for the Philadelphia chromosome. Therefore, K562 cells have been widely used for investigating the BCR/ABL1 oncogene and the tyrosine kinase inhibitor, imatinib-mesylate. Further, K562 cells overexpress transferrin receptors (TfR) and have been used as a model for targeting cytotoxic therapies, via receptor-mediated endocytosis. Here, we have characterized K562 cells focusing on the karyotype of cells in prolonged culture, regulation of expression of TfR in wildtype (WT) and doxorubicin-resistant cells, and responses to histone deacetylase inhibition (HDACi). Karyotype analysis indicates novel chromosomes and gene expression analysis suggests a shift of cultured K562 cells away from patient-derived leukemic cells. We confirm the high expression of TfR on K562 cells using immunofluorescence and cell-surface receptor binding radioassays. Importantly, high TfR expression is observed in patient-derived cells, and we highlight the persistent expression of TfR following doxorubicin acquired resistance. Epigenetic analysis indicates that permissive histone acetylation and methylation at the promoter region regulates the transcription of TfR in K562 cells. Finally, we show relatively high expression of HDAC enzymes in K562 cells and demonstrate the chemotoxic effects of HDACi, using the FDA-approved hydroxamic acid, vorinostat. Together with a description of morphology, infrared spectral analysis, and examination of metabolic properties, we provide a comprehensive characterization of K562 cells. Overall, K562 cell culture systems remain widely used for the investigation of novel therapeutics for CML, which is particularly important in cases of imatinib-mesylate resistance.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Células K562 , Proteínas de Fusão bcr-abl/genética , Transferrina , Pirimidinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Histona Desacetilases/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Receptores da Transferrina/genética , Cromossomos/metabolismo , Mesilatos/farmacologia , Apoptose
16.
Redox Biol ; 64: 102779, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37339558

RESUMO

BACKGROUND: Apolipoprotein E deficiency (ApoE-/-) increases progressively iron in the liver, spleen and aortic tissues with age in mice. However, it is unknown whether ApoE affects brain iron. METHODS: We investigated iron contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), aconitase, hepcidin, Aß42, MAP2, reactive oxygen species (ROS), cytokines and glutathione peroxidase 4 (Gpx4) in the brain of ApoE-/- mice. RESULTS: We demonstrated that ApoE-/- induced a significant increase in iron, TfR1 and IRPs and a reduction in Fpn1, aconitase and hepcidin in the hippocampus and basal ganglia. We also showed that replenishment of ApoE absent partly reversed the iron-related phenotype in ApoE-/- mice at 24-months old. In addition, ApoE-/- induced a significant increase in Aß42, MDA, 8-isoprostane, IL-1ß, IL-6, and TNFα and a reduction in MAP2 and Gpx4 in hippocampus, basal ganglia and/or cortex of mice at 24-months old. CONCLUSIONS: Our findings implied that ApoE is required for brain iron homeostasis and ApoE-/--induced increase in brain iron is due to the increased IRP/TfR1-mediated cell-iron uptake as well as the reduced IRP/Fpn1 associated cell-iron export and suggested that ApoE-/- induced neuronal injury resulted mainly from the increased iron and subsequently ROS, inflammation and ferroptosis.


Assuntos
Hepcidinas , Ferro , Camundongos , Animais , Hepcidinas/genética , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Receptores da Transferrina/genética , Homeostase , Encéfalo/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas/metabolismo
17.
RNA ; 29(8): 1117-1125, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160355

RESUMO

The interactions of iron regulatory proteins (IRPs) with mRNAs containing an iron-responsive element (IRE) maintain cellular iron homeostasis and coordinate it with metabolism and possibly cellular behavior. The mRNA encoding transferrin receptor-1 (TFRC, TfR1), which is a major means of iron importation, has five IREs within its 3' UTR, and IRP interactions help maintain cytosolic iron through the protection of the TfR1 mRNA from degradation. An IRE within the 3' UTR of an mRNA splice variant encoding human cell division cycle 14A (CDC14A) has the potential to coordinate the cellular iron status with cellular behavior through a similar IRP-mediated mechanism. However, the stability of the CDC14A splice variant was reported earlier to be unaffected by the cellular iron status, which suggested that the IRE is not functional. We labeled newly synthesized mRNA in HEK293 cells with 5-ethynyl uridine and found that the stability of the CDC14A variant is responsive to iron deprivation, but there are two major differences from the regulation of TfR1 mRNA stability. First, the decay of the CDC14A mRNA does not utilize the Roquin-mediated reaction that acts on the TfR1 mRNA, indicating that there is flexibility in the degradative machinery antagonized by the IRE-IRP interactions. Second, the stabilization of the CDC14A mRNA is delayed relative to the TfR1 mRNA and does not occur until IRP binding activity has been induced. The result is consistent with a hierarchy of IRP interactions in which the maintenance of cellular iron through the stabilization of the TfR1 mRNA is initially prioritized.


Assuntos
Deficiências de Ferro , Ferro , Humanos , Ferro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Células HEK293 , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(21): e2214936120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192162

RESUMO

Influenza A virus (IAV) enters host cells mostly through clathrin-dependent receptor-mediated endocytosis. A single bona fide entry receptor protein supporting this entry mechanism remains elusive. Here we performed proximity ligation of biotin to host cell surface proteins in the vicinity of attached trimeric hemagglutinin-HRP and characterized biotinylated targets using mass spectrometry. This approach identified transferrin receptor 1 (TfR1) as a candidate entry protein. Genetic gain-of-function and loss-of-function experiments, as well as in vitro and in vivo chemical inhibition, confirmed the functional involvement of TfR1 in IAV entry. Recycling deficient mutants of TfR1 do not support entry, indicating that TfR1 recycling is essential for this function. The binding of virions to TfR1 via sialic acids confirmed its role as a directly acting entry factor, but unexpectedly even headless TfR1 promoted IAV particle uptake in trans. TIRF microscopy localized the entering virus-like particles in the vicinity of TfR1. Our data identify TfR1 recycling as a revolving door mechanism exploited by IAV to enter host cells.


Assuntos
Vírus da Influenza A , Transferrina , Vírus da Influenza A/fisiologia , Internalização do Vírus , Endocitose/fisiologia , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
20.
Brain Res ; 1811: 148373, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105375

RESUMO

Intracerebral hemorrhage (ICH) refers to the hemorrhage caused by the increase and rupture of vascular brittleness in non traumatic brain parenchyma, which has been demonstrated to be closely related to ferroptosis. This study aimed to examine the effects of methyltransferase like 3 (METTL3) on the ferroptosis in the ICH progression. The PC12 cells was stimulated by hemin to establish a ICH model. The cell viability was tested by CCK8 assay. The Fe2+, reactive oxygen species (ROS), and malondialdehyde (MDA) levels were determined by the corresponding commercial kits. The cell death was analyzed by propidium Iodide (PI) staining. The lactylation levels were detected by western blot. M6A dot blot assay was performed to detected the total m6A levels and MeRIP assay was conducted to determine the m6A levels of transferrin receptor (TFRC). We found that the METTL3 and m6A levels were increased in the hemin treated PC12 cells. METTL3 knockdown increased the cell viability and decreased Fe2+, ROS and MDA levels in the hemin treated PC12 cells. The role of METTL3 knockdown in the hemin treated PC12 cells was reversed after TFRC overexpression. Mechanistically, the METTL3 lactylation was increased in the hemin treated PC12 cells, which further enhanced the protein stability and expression of METTL3. The up-regulated METTL3 increased the m6A levels and mRNA expressions of TFRC, which further induced the ferroptosis of the PC12 cells. In conclusion, the up-regulation of METTL3 lactylation enhanced the METTL3 protein stability and expression levels in hemin treated PC12 cells. METTL3 silenced suppressed the ferroptosis development through regulating the m6A levels of TFRC mRNA.


Assuntos
Ferroptose , Ratos , Animais , Metiltransferases/genética , Metiltransferases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hemina/farmacologia , Hemina/metabolismo , Hemorragia Cerebral , Receptores da Transferrina/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...